Android Binder Security Note
On >Passing Binder Through Another Binder<

(extended abstract, November 11™ 2011)
updated: November 16™ 2011

Tomas Rosa

http://crypto.hyperlink.cz

Binder related sub-paghttp://crypto.hyperlink.cz/abinder.htm

Keywords: Android, binder, OpenBinder, security, cross-bindgerence forgery (XBRF).

This memo describes certain details of the Andr@thanism opassing binder through another binder. The aim of
this paper is to describe certain technical defiilshis mechanism as well as to point out someiaiss security
weaknesses. For the sake of simplicity, we do ndude description of the whole Android binder feamork here.
The interested reader may check the OpenBinderndestation by Dianne K. Hackborn that is still ashike in [1].
Despite it not being compatible with the Androichdbér framework, a lot of OpenBinder general idesens to still

apply.

Before describing our observations, one clarifmatis apposite: OpenBinder is obviously more gdneoacept.
Therefore, when Android documentation talks abcalting a remote binder and passing on a binder reference,
OpenBinder documentation talks abduatoking a remote object method and passing on an object reference,
respectively. Obviously, the OpenBinder terminolaigscribes more clearly what is going on when wépess a
“binder”. Anyway, if Android people ever talk aboatbinder they are often referring tandr oi d. os. | Bi nder
Java interface or, in particular, to the code thaerving the remote side of the binder pipe (ic.to the kernel driver
of the same name [2], [3]). In Android, there isaah term for the code stub that pretends to héladapable local
object, but it actually only hands incoming reqaester to the remote side — it is callepraxy binder (in OpenBinder,
this is aproxy object). Keeping these distinctions on mind actually nsakee available documentation a bit more
readable. In the following, we will stay with thendroid-related terminology. So, in the followingbimder does not
refer to the kernel driver itse(f2], [3]), it refers to a code that we can invakenotelythrough this driver.

Furthermore, if not stated otherwise, for the sakeimplicity and regarding the way threads arelemented in the
contemporary Linux kernels [12], we use the wordscpss and thread interchangeably in the follovigyd. Note,
however, that the binder framework implementatiefemed here not only supports threads — it agtudilectly
assumes that the whole transaction processingniergity assisted by several working threads of eaaticular
process.

For calling a remote binder method, there is anoirtgnt rule saying that a process (that has opehed
/ dev/ bi nder driver) can invoke only such remote binders thatas explicitly invited to call. In the structure
bi nder _pr oc defined in [2], the kernel driver keeps sorteésref allowed remote binders per each attachedepsoc
(cf. refs_by desc and refs_by node fields of bi nder _proc). In particular, there is an independent
bi nder _pr oc structure kept per each open file descriptof @év/ bi nder . It is referred to by a pointer stored in
privat e_dat a of the respectivd i | e structure object [12]. We can see the creatiorbiofider _proc in

bi nder _open() [2]. Note that the driver is written using the k#laneous Character Drivers (misc) framework [4].

The set of allowed binders for each process (egam transitive relation ofgfocess P is invited by process Q to call
binder B") is almost automatically updated by the kerneVealr basing on the binder references exchangedirwith
transactions flowing through thathers, already established binder pipes. Simply sayaighellow for more details),
the kernel driver actively sniffs the data beingtse any binder communication. When it finds ad@nreference, it
verifies the binder already belongs to the setlofieed binders for the target process. If no, thenkl driver introduces
its reference intaoef s_by_desc andrefs_by node r-b trees in the targdti nder _proc. This way, the

receiving process gets invited to call that bindégr on. To be able to send such invitation, thatér itself must have
been invited to call that binder before.

There is one special binder reference that is aitgr allowed by default - this is the handle Qoéig asNULL pointer)

that refers to the ServiceManager. This is a Lidagmon implemented ser vi ce_manager . ¢ [9]. In Java world,
it is encapsulated bgndr oi d. os. | Servi ceManager Java proxy binder interface. An interesting comioation

graph showing ServiceManager at work is presented7] (cf. part “14. Binder”). It is worth notinghat the
ServiceManager not only plays the role of globaldeir locator. It also plays an important role iré'ding” the whole
invitation relation.

When the particular service (e.g. ActivityManagegisters its binder object at ServiceManagem ifaict passes its
binder reference to ServiceManager. The kerneledrirecognizes this and introduces that referente thre set of
allowed binders for ServiceManager (mefs_ by desc and refs_by node trees in itsbi nder proc
structure). That means the ServiceManager is naiteth (allowed) to call ActivityManager. Later owhen another
processP asks a binder reference for ActivityManager arel $lerviceManager replies with this reference, thgain
the kernel driver sees this and it introduces plaaticular binder reference into the respectivesrmbi nder _proc

of proces®. In this way, procesB gets also invited to talk to ActivityManager. Fhetmore, it has the same effect as
if P has been invited to call this binder directly I tActivityManager itself. Formally speaking, weedeow the
transitivity property of the relatiors invited to call is employed to start up to whole IPC communicatidherefore,
ServiceManager is not only the global locators ialiso the global inviter.

It is interesting to look at how the mechanism i@férence sniffing" or "invitation capturing" work§he answer is in
the structurebi nder _t ransacti on_dat a defined inbi nder . h (of the kernel driver, cf. [3]). This structure
describes the particular transaction command/reghta being exchanged with a binder object. Beside
dat a. ptr. buf f er pointing to the data payload, we can data. ptr. of f set s pointer. This is an array of data
offsets that should index all binder referencesxpgrassed on in the data payload. It is the usacespode that
prepares the data payload (parcel) which is resplenfor providing these indices to the kernel drivThe particular
“parceled” data structure for the binder refereixcél at _bi nder _obj ect defined in [3]. When processing the
data payload, the kernel driver looks at thoseiaddar offsets and manipulates the references bgiisged on together
with eventually introducing them into the respeetivees in the targdti nder _proc structure, hence inviting the
target process to call these binders later on.sBinge mechanism works for both command and repéytdatsfers.

Of course, there is much more to say about thigtdfor instance, when it comes to reference cagnfio keep the
referenced binders alive), the situation startset@ bit fuzzy. It definitely requires to reverseimeer the whole kernel
driver together with its helping stuff in the uspace to fully understand this.

The binder reference representatiofiirat _bi nder _obj ect [3] also deserves a few words. In short - locabeis
(i.e. those ones being hosted in the current ps)@ee represented directly by pointers to the sgace objects, while
remote binders (i.e. those ones being hosted bgradte” process) are referred by handles. In thedtariver, there
is a system-wide unique representation of eachesibigder bybi nder _node structure instance [3]. In the kernel
space, local binders of a process are referencedtlgi by bi nder _node pointers sorted imodes r-b tree in the
particularbi nder _pr oc, while remote binders are primarily referencedrictly via descriptors (it is just driver’s
word for thehandl e appearing irf | at _bi nder _obj ect) sorted intor ef s_by_desc andrefs_by_ node
trees inbi nder _proc.

Because of the unique binder object representatitine kernel (abi nder _node), the whole mechanism of binder
passing has one interesting feature: A procesgieaie a binder and send it (its reference) someantoethe Android
ecosystem world. Later on, when this process plyss#iteives the same binder back, it will get thene user space
pointer. Therefore, the process can recognize iisiswn binder it has sent to the Android worlddse. The same
works for binders referenced by handle — a processe.g. recognize it has just received the biitdead already
received before. All this can be done by examirgnlely the binder reference data, the integrityvbfch should be
(cf. bellow) preserved by the kernel driver.

This was a relatively short description of the leirthrough-binder passing mechanism. This obsemwatiowever,
does not explain whether it is possible to pass tander reference from proce@sto process$ in such a way, that
once being invoked from, it will still seem likeQ is calling the binder (instead BY. By examiningbi nder . ¢ [2],

it is easy to see the mechanism described aboveserves PID/eUID-based caller authentication. the other
hand, the kernel driver is also capable of passingpen file descriptors. It would be interestingverify what would
happen ifQ would pass o directly its file descriptor of dev/ bi nder . Actually, this might work, since the kernel

driver uses PID and eUID noted lim nder _pr oc (cf. itspi d andt sk- >cr ed- >eui d fields) which seems to be
passed together with the file descriptor. Wells ikian open question. All we can say now is thatkernel driver uses
the same mechanism and data structure for locfilindescriptors among the parceled data beingfeared as for the
binder references described above. The interestter may try to search fBf NDER_TYPE_FDin [2]. In particular,
this is the value of ype field inf | at _bi nder _obj ect in case of a file descriptor is to be sent.

Actually, the open file descriptor passing mechangan be easily observed right in thenpsys utility [5]. It is
employed here to pass on t88DOUT_FI LENO of thedunpsys Linux process within th®UMP_TRANSACTI ON
data payload (this is the transaction D3 in th@leéircommunication graph [7]). It is interestingctoeck [6] to see how
the binder transaction gets formed and invokedhgaproxy binder methoBpBi nder : : dunp() . The remote side
binder uses this file descriptor to write its outdata on behalf of théunpsys process right into its terminal output.
To see how far this file descriptor really propagatwe may look at the methgoublic void dunp
(Fil eDescriptor fd, String[] args) ofandroi d. os. Bi nder [8]. Well, that is quite nice mechanism.

As was already noted in [10], the Android operat{rgo)system is based on intensive object-orientiest-server
communication. It is the binder framework that risthe center of this communication most of the tifreom the
security viewpoint, it is reasonable to ask on Hawis the binder framework resistant against &gadmeing typically
prevalent in this area. One such typical attack $@ssion hijacking — an attacker steals a comratioicpipe that was
opened by some application component and contimuesmmanding the remote side (e.g. a service)nHapers like
[10], one can deduce that explicit cryptographyelatechniques are seldom employed by user apjplitato preserve
authentication and integrity of the binder commatian. Actually, the state of the art seems todmresented by the
Android operating system that uses the authenpicdiased on caller’s PID/eUID for (at least sonjetsfown system
services. The userland applications seem to simglly on “security by obscurity” approach by hopitigat it is
somehow hard to hijack the binder communication.

From the session hijacking viewpoint, the paradigfmexplicit invitation described above seems toedéfthe most
straightforward attacks based on stealing or singplyssing a binder reference. Until the particblader reference is
inserted into the respective treeskinnder _proc of the process, it is useless in direct commuitpafof that

process). Furthermore, it should get introducedettomly by the mechanism of explicit reference ags i.e. the

invitation to call. So, the whole concept looks good.

We should be, however, a bit worried about the rapigm of reference sniffing described above. Themtal
weakness is that it relies on a hint from the sgeice that helps the kernel driver to locate bineierences in the data
payload (cf.dat a. ptr.of fsets in bi nder_transacti on_dat a). If a dishonest sending process will not
explicitly index the particular binder referencargepassed on, it will probably bypass the sniffingchanism of the
kernel driver. Therefore, the reference data wélHanded unmodified over to the receiver. The veceill, however,
still regard it as a binder reference becausesoAiDL (or equivalent) template. In this way, thisltbnest sender may
transfer a raw binder reference data that will \mdeated later on with respect to the r-b tredsiinder _pr oc of the
target process (or to say — in the context of the rentiteler). It actually allows an attacker to furthedirectly
reference those binders that the target processieeady invited to call before. By fooling thedat process this way,
the attacker can manage the target to further grass call its “protected” binder (that the attaclsenot invited to call
directly). We call this @&ross-binder reference forgery (XBRF).

On a first sight, it may seem the cross-binderregfee forgery is a minor or even artificial probldinmay, however,
lead to practical attacks on many naive userlamdicgiion. In the worst case, there can be sonaelatright on the
Android application framework mechanisms — i.e.tb@ object-oriented kernel that makes the Andreoicbperating
system in itself (sitting on the top of an Embeddéaux kernel). It, however, requires further ddegestigation.
There is, for instance, a strange-looking fieldoki e in f | at _bi nder _obj ect that could theoretically prevent
these attacks (or at least some of them). Unfotélyathis mechanism seems not to work (as a sgconeasure) for
binder references being passed on as handles,tbimo®rrect value gets filled in automaticallythg kernel driver or
is not important at all (cfbi nder _transacti on() in [2] and search foBl NDER_TYPE_HANDLE). In other
words, cookies seem to be important only when riefgrto local binders (i.e. those ones being hosteithe current
process) by using user space pointers to theirirgpmbjects (cf. discussion dfl at _bi nder _obj ect above).
Finally, this is a condition the attacker can avioithe cross-binder reference forgery.

Besides making the application components themselse reliable cryptographic authentication tealnesg there is a
promising approach aimed at improving the kerneledritself [11]. An important assumption for a sassful XBRF

attack is that the attacker has at least certaa @wh which binder references are already valithéncontext of the
target process. Therefore, employing reference learathdomization seems to be a natural way on lwhatden the

attacker’s task considerably. It must be, howeskecked carefully on how much entropy we can raatipduce into
these handles and whether there are some other avapiew the attacker could learn valid referencethée target
process regardless their random nature. Apparahtye are still a lot of interesting open question

Update (November 18 2011)

To support the ServiceManager daemon [9], thesesisall local modulei nder . ¢ (cf. [13], [14]). Attention should
be paid not to confuse this module with the maim&kedriver of the same name (cf. [2], [3]). Thiender . ¢ [13] is

in fact a simple toolbox that is used by Serviceltgar to handle its binder communication. We nofts iworth it

studying this module in itself, since several aspet the binder framework communication can bered here in
considerably easier way than by studying the deegst of Java world objects.

Important function regarding the potential XBRmiso_get _ref () of [13] that is used by ServiceManager to parse
a binder reference to be registered at the manabes function further calls the static C functiohi o_get obj ()

of [13] which is actually the core of binder refece parsing here. To better describe its relabokBRF, we copy and
paste this particular function here.

static struct binder_object * bio_get obj(struct binder_io *bio)
{

unsi gned n;

unsi gned of f = bio->data - bi o->dat a0;

/* TODO be smarter about this? */
for (n = 0; n < bio->offs_avail; n++) {
if (bio->offs[n] == off)
return bio_get(bio, sizeof(struct binder_object));

}

bi o->data_avail = 0;

bi o->fl ags | = Bl O F_OVERFLOW
return O;

}

Apparently, the programmer who wrote that pieceaafe was probably aware of the XBRF threat. laisyeto see that
to successfully parse the flat binder object thisction requires its data pointer to be alreadyedadh the array of
binder reference offsets. This way, the XBRF sdenarmitigated for any code that is using thisdiion to parse flat
(parceled) binder objects in its transactions.

Well, this is another kind of countermeasure that defeat XBRF attack strategy effectively. Ithewever, again
based on a user space code. This time, of cotisenat a code that the attacker should have uitsleontrol, since it
is the recipient’s code (i.e. the remote bindes} therforms the check. On the other hand, thestilisa residual risk
that programmers will simply omit to do such a dbét their codes. Furthermore, the conceptual demkiof the

kernel driver relying solely on a user space hsrtill not solved by a countermeasure of this kiFiderefore, in some
situations, a careful manipulation with the tranigac data prepared by an attacking process mallstl to a

successful XBRF exploit.

Anyway, it is an interesting observation to see g@mebody was probably already aware of XBRF bisfore. It
would be also interesting to further explore whethigch a countermeasure is really employed in thelevAndroid
operating system.

References
/* The source tree refers to Android Gingerbre&3(android-2.3.5_r1 tag). */

[1] Hackborn, D.-K.:OpenBinder version 1.0,
htt p: // ww. angr yr edpl anet . coml ~hackbod/ openbi nder/ docs/ ht m /i ndex. ht m , checked
11/11/11

[2] gingerbread/kernel/drivers/staging/android/lend

[3] gingerbread/kernel/drivers/staging/android/l@nt

[4] Rubini, A.: Miscellaneous Character Drivers, Linux Journal, June 30, 1998,
http://ww. |inuxjournal.confarticle/ 2920, checked 11/11/11

[5] gingerbread/frameworks/base/cmds/dumpsys/dusppyp
[6] gingerbread/frameworks/base/libs/binder/BpBincap

[7] Yaghmour, K.-J.Embedded Android Workshop, ELCE 2011,
http://ww. sl i deshare. net/opersys/ enbedded- andr oi d- wor kshop- at - enbedded-

I i nux-conf erence- eur ope- 2011, checked 11/11/11

[8] gingerbread/frameworks/base/core/java/andrsiBmder.java
[9] gingerbread/frameworks/base/cmds/servicemarsggice _manager.c

[10] Chin, E., Felt, A.-P., Greenwood, K., and WagrD.: Analyzing Inter-Application Communication in Android,
MobiSys’11, June 28-July 1, 2011

[11] Bugek, J.:Personal communication on a former version of this note, November 2011
[12] Bovet, D.-P. and Cesati, MUnderstanding the Linux Kernel, Third Edition, O'Reilly Media, Inc., 2006
[13] gingerbread/frameworks/base/cmds/servicemartzigder.c

[14] gingerbread/frameworks/base/cmds/servicemarisigder.h

